A preservation result for completely regular locales
نویسندگان
چکیده
منابع مشابه
A note on semi-regular locales
Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.
متن کاملa note on semi-regular locales
semi-regular locales are extensions of the classical semiregularspaces. we investigate the conditions such that semi-regularizationis a functor. we also investigate the conditions such that semi-regularizationis a reflection or coreflection.
متن کاملArithmetic completely regular codes
In this paper, we explore completely regular codes in the Hamming graphs and related graphs. Experimental evidence suggests that many completely regular codes have the property that the eigenvalues of the code are in arithmetic progression. In order to better understand these “arithmetic completely regular codes”, we focus on cartesian products of completely regular codes and products of their ...
متن کاملOmpactification of Completely Regular Frames based on their Cozero Part
Let L be a frame. We denoted the set of all regular ideals of cozL by rId(cozL) . The aim of this paper is to study these ideals. For a frame L , we show that rId(cozL) is a compact completely regular frame and the map jc : rId(cozL)→L given by jc (I)=⋁I is a compactification of L which is isomorphism to its Stone–Čech compactification and is proved that jc have a right adjoint rc : L →...
متن کاملCompletely Regular Stationary Processes
We are going to give necessary and suucient conditions for a multivariate stationary stochastic process to be completely regular. We also give the answer to a question of V.V. Peller concerning the spectral measure characterization of such processes .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2014
ISSN: 0166-8641
DOI: 10.1016/j.topol.2014.02.017